Extended Naive Bayes classifier for mixed data

نویسندگان

  • Chung-Chian Hsu
  • Yan-Ping Huang
  • Keng-Wei Chang
چکیده

Naive Bayes induction algorithm is very popular in classification field. Traditional method for dealing with numeric data is to discrete numeric attributes data into symbols. The difference of distinct discredited criteria has significant effect on performance. Moreover, several researches had recently employed the normal distribution to handle numeric data, but using only one value to estimate the population easily leads to the incorrect estimation. Therefore, the research for classification of mixed data using Naive Bayes classifiers is not very successful. In this paper, we propose a classification method, Extended Naive Bayes (ENB), which is capable for handling mixed data. The experimental results have demonstrated the efficiency of our algorithm in comparison with other classification algorithms ex. CART, DT and MLP’s. 2007 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Naive Credal Classifier 2: a robust approach to classification for small and incomplete data sets

Naive Credal Classifier, which is an imprecise-probability counterpart of Naive Bayes, is rigorously extended to a very general and flexible treatment of incomplete data, yielding a new classifier called Naive Credal Classifier 2 (NCC2). The new classifier delivers classifications that are robust to the presence of small sample sizes and missing values. In particular, some empirical evaluations...

متن کامل

Learning Reliable Classifiers From Small or Incomplete Data Sets: The Naive Credal Classifier 2

In this paper, the naive credal classifier, which is a set-valued counterpart of naive Bayes, is extended to a general and flexible treatment of incomplete data, yielding a new classifier called naive credal classifier 2 (NCC2). The new classifier delivers classifications that are reliable even in the presence of small sample sizes and missing values. Extensive empirical evaluations show that, ...

متن کامل

Augmented Naive Bayesian Classifiers for Mixed-Mode Data

Conventional Bayesian networks often require discretization of continuous variables prior to learning. It is important to investigate Bayesian networks allowing mixed-mode data, in order to better represent data distributions as well as to avoid the overfitting problem. However, this attempt imposes potential restrictions to a network construction algorithm, since certain dependency has not bee...

متن کامل

Averaged Extended Tree Augmented Naive Classifier

This work presents a new general purpose classifier named Averaged Extended Tree Augmented Naive Bayes (AETAN), which is based on combining the advantageous characteristics of Extended Tree Augmented Naive Bayes (ETAN) and Averaged One-Dependence Estimator (AODE) classifiers. We describe the main properties of the approach and algorithms for learning it, along with an analysis of its computatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2008